中国源光

第16卷 第2期

凹面反射镜系统的傅里叶变换性质

何 锇* 黄乐天 (暨南大学物理系,广州)

Fourier transform properties of concave mirrors

He Yue, Huang Letian (Department of Physics, Jinan University, Guangzhou)

提要:本文通过计算机的数值计算,证明了凹球面镜和抛物面镜一类反射系统 对入射光场具有傅里叶变换性质。用具有代表性的滤波操作,从实验上验证了这种 性质。说明了凹面反射镜与透镜在光学信息处理中可起到等效的作用。

关键词: 凹面反射镜; 傅里叶变换

一、引言

凹面反射镜和透镜有许多类似的光学性 质,但反射镜用于光学信息处理却比透镜用 于光学信息处理晚得多,而且报道也少得多。 美国的 A. S. Husain-Abidi 在 1971 年首先 提出了由三个旋转抛物面反射镜组成的 4f 光学系统,并应用于宇宙飞船上的光学数据 处理^(1~33)。P. C. Mehta 等仿照他的光路,用 反射全息透镜取代了抛物反射面,并进行了 空间滤波实验⁽¹⁴⁾。

在集成电路制造领域, A. Offer 和 A. Suzuki 提出了由相对着的凹凸球 面反射镜 组成的系统并分析了像差^[5~8]。后来 C. S. Ih 用计算机追迹了这类系统的多个成像点,以均方根误差为依据,分析系统的成像和傅里 叶变换特性^[53]。

近年来,苏联的 B. I. Spektor 设计了几 种凹面反射镜光学信息处理系统,并结合反 射滤波器、计算机等进行了光学数据处理^[10~11]。

本文通过计算机数值计算,证明了在键 金属的反射镜表面反射时,在反射镜孔径内, 由于入射角不同而引起的金属反射相变和反 射率的差别很小,因而可以忽略。反射镜对 入射光场的影响可用一个只考虑其几何形状 引起位相延迟的函数来表示,由此说明凹面 反射镜具有傅里叶变换性质的原理。本文在 一个简单的纯反射镜系统中进行了Abbe-Porter 滤波和匹配滤波实验,检验了上述原 理,说明反射镜傅里叶变换系统和透镜傅里 叶变换系统具有等效的作用。

二、原 理

2.1 反射镜对光场的变换函数

如图1所示,反射镜垂直于光轴对称地

收稿日期: 1987年7月9日。

* 现在华南工学院物理系任教。

放置。

(1) 金属表面的反射相变。假定所镀金 属膜比较厚, TE 波和 TM 波的反射率(𝔐, 𝔐)和位相变化(φ_𝔅, φ_𝔐)可分别用下式表 示^{CL33}:

$$\begin{aligned}
\mathscr{R}_{B} &= \frac{(n_{1}\cos\theta_{1}u - 2)^{2} + v_{2}^{2}}{(n_{1}\cos\theta_{1} + u_{2})^{2} + v_{2}^{2}}, \\
& \tan\phi_{E} &= \frac{2v_{2}n_{1}\cos\theta_{1}}{u_{2}^{2} + v_{2}^{2} - n_{1}^{2}\cos^{2}\theta_{1}}, \\
\end{aligned}$$
(1)

$$\mathscr{R}_{M} &= \frac{\left\{ \left[n_{2}^{2}(1 - k_{2}^{2})\cos\theta_{1} - n_{1}u_{2} \right]^{2} \right\}}{\left\{ \left[n_{2}^{2}(1 - k_{2}^{2})\cos\theta_{1} - n_{1}v_{2} \right]^{2} \right\}} \\
& \left\{ \left\{ n_{2}^{2}(1 - k_{2}^{2})\cos\theta_{1} + n_{1}u_{2} \right\}^{2} \right\} \\
& \left\{ n_{2}^{2}(1 - k_{2}^{2})\cos\theta_{1} + n_{1}v_{2} \right]^{2} \right\} \\
& = \frac{2k_{2}u_{2} - (1 - k_{2}^{2})v_{2}}{\left\{ n_{2}^{4}(1 + k_{2}^{2})^{2}\cos^{2}\theta_{1} \\
& -n_{1}^{2}(u_{2}^{2} + v_{2}^{2}) \right\}} \cdot 2n_{1}n_{2}^{2}\cos\theta_{1} \\
\end{aligned}$$

式中 n_1 是空气折射率,取为 $1; n_2, k_2$ 是金属 的光学常数,分别是复折射率的实部和虚部 $(\hat{n}=n_2+ik_2n_2)_{\circ}$, θ_1 是入射角。参量 u_2, v_2 与 n_2, k_2 的关系是:

$$2u_{2}^{2} = n_{2}^{2}(1-k_{2}^{2}) - n_{1}^{2}\sin^{2}\theta_{1} \\ + \sqrt{[n_{2}^{2}(1-k_{2}^{2}) - n_{1}^{2}\sin^{2}\theta_{1}]^{2} + 4n_{2}^{4}k_{2}^{2}} \\ 2v_{2}^{2} = -[n_{2}^{2}(1-k_{2}^{2}) - n_{1}^{2}\sin^{2}\theta_{1}] \\ + \sqrt{[n_{2}^{2}(1-k_{2}^{2}) - n_{1}^{2}\sin^{2}\theta_{1}]^{2} + 4n_{2}^{4}k_{2}^{2}} \\ \end{cases}$$

$$(3)$$

根据上面的公式,反射时的相变随入射角 θ_1 而变化,因实验中用的反射镜是镀厚铝膜的, 我们用计算机计算了铝在几个波长处,不同 入射角的绝对相变 $\phi_{\rm E}(\theta_1)$ 和 $\phi_{\rm M}(\theta_1)$,以及相 对于垂直入射 $\phi(0)$ 的相变。

表1是波长为0.589μm 时对铝的计算 结果。计算中取 n₁=1, n₂=1.36, n₂k₂=4.45, 反射面曲率半径 R=96.0 cm。 II 是入射点 与光轴的距离。

表 1

H (cm)	<i>θ</i> 1 (度)	$\frac{\phi_{\mathbb{E}}\theta(_1)}{(\mathrm{rad})}$		$\mathscr{R}_E(\theta_1)$	$\mathcal{R}_M(\theta_1)$
0	0	0.407	0.407	0.786	0.786
3.80	2.30	0.407	0.407	0.786	0.785
7.70	4.60	0.406	0.408	0.786	0.785
11.5	6.90	0.404	0.410	0.787	0.784
15.4	9.20	0.402	0.412	0.788	0.783
19.2	11.5	0.399	0.415	0.790	0.782
23.0	13.9	0.395	0.419	0.791	0.780
26.9	16.3	0.390	0.424	0.794	0.777
30.7	18.7	0.385	0.430	0.796	0.775

 $\lambda=0.589$ μm; 材料: 铝; θ_1 : 入射角; ϕ_B 、 ϕ_M : TE 和 TM 波的反射相变; $\mathscr{R}_B(\theta_1)$ 、 $\mathscr{R}_M(\theta_1)$: TE 和 TM 波的 反射率

从表中可看到相变是 10^{-1} rad 数量级。 在 $0^{\circ} \sim 20^{\circ}$ 的范围内, $\phi_{E}(\theta_{1})$ 随 θ_{1} 增大而減 小, $\phi_{n}(\theta_{1})$ 则相反。反射率 \mathscr{R}_{E} 略有增大, \mathscr{R}_{M} 略有减小, 两者的平均值缓慢增大。

图 2 的 (a) ~ (c) 更清楚地描绘了金属反 射相变的相对变化 $\phi(\theta_1) - \phi(0)$ 。从图线可看 到, 对于各种波长, 入射角在 20°范围内, 光 波之间的反射相变之差在 10⁻³ rad 范围, 远 小于 2 π 。实验中 所用 反射 镜孔 径 最大是 (2H=)5 cm, 所以可认为在整个镜面内金属 的反射相变是相同的。对入射光场的影响主 要是反射镜几何形状造成的位相延迟。

(2)反射镜几何形状引起的位相延迟。 假定球面反射镜的半径远大于反射镜孔径, 这时可认为傍轴光线在整个反射区域内都是 垂直入射的。可以证明这样考虑引起的误 差相对于凹面镜引起的位相延迟是可忽略的。

在图1中,球面镜的反射面方程是:

$$z = \sqrt{R^2 - x^2 - y^2},$$
 (4)

根据上面假定有 R≫x, y, 于是有:

$$\Delta z = R - \sqrt{R^2 - x^2 - y^2} \simeq \frac{x^2 + y^3}{2R}, \quad (5)$$

· 100 ·

横坐标是入射角
$$\theta_1$$
(度), 纵坐标向上的是 [$\phi_B(\theta_1) - \phi(0)$],向下的是 [$\phi_M(\theta_1) - \phi(0)$],单位: rad

这里实质上是用抛物面代替了球面,也暗示 着用抛物面作反射面将比用球面要好。入射 场经凹球面反射时,在(*x*, *y*)点发生的总位 相延迟可近似写成

$$\xi = 2kn_0(l_0 - \Delta z) = 2kn_0\left(l_0 - \frac{x^2 + y^2}{2R}\right),$$
(6)

式中 no 是空气折射率, lo 是凹镜中心的深度, 考虑光线垂直反射引起的误差相当于在图 1 中,用三角形 ABC 的 AB 边代替 AC 边, 位 相误差是:

$$\begin{split} \delta &= 2kn_0 \left(\overline{AO} - \overline{AB} \right) \\ &= 2kn_0 \left[\frac{(l_0 - \Delta z)}{\cos(2\theta_1)} - (l_0 - \Delta z) \right] \\ &= 2kn_0 (l_0 - \Delta z) \left(1/\cos(2\theta_1) - 1 \right). \end{split}$$

 $= 2kn_0(l_0 - \Delta z) (1/\cos(2\theta_1) - 1),$ (7) 又由图1的几何关系得:

$$\tan\theta_1 = \frac{\sqrt{x^2 + y^2}}{R - \Delta z}, \qquad (8)$$

因反射镜垂直光轴放置,而且 R 较大,入射 角 θ₁ 很小。对(7)式和(8)式作近似得到:

$$\delta \simeq 4kn_0(l_0 - \Delta z)\theta_1^2 \quad \exists l \quad \theta_1^2 \simeq \frac{x^2 + y^2}{(R - \Delta z)^2}$$
(9)

由于 R≫x 和 y, 比较(6) 式和(9) 式得:

$$\delta \simeq 4kn_0(l_0 - \Delta z) \frac{x^2 + y^2}{(R - \Delta z)^2} = 2\xi \frac{x^2 + y^2}{\left(R - \frac{x^2 + y^2}{R}\right)^2} \ll \xi, \qquad (10)$$

也就是说,用(6)式近似描写凹球面反射镜引 起的位相延迟是合适的。若反射面的反射率 较高,而且几乎与点(x, y)无关,正如表1所 示的情形,就可认为反射镜对入射场的影响 仅仅是带来了位相延迟,其反射函数是纯位 相函数:

$$r(x, y) = \exp(i2kn_0l_0)$$

$$\times \exp\left[-i\frac{kn_0}{R}(x^2+y^2)\right]$$

$$= \exp(i2kn_0l_0)$$

$$\times \exp\left[-i\frac{k}{2f}(x^2+y^2)\right] (11)$$

式中f=R/2no可合适地称为焦距,忽略第一 个常数因子,球面镜的反射函数就变为:

$$r(x, y) = \exp\left[-i\frac{k}{2f}(x^2+y^2)\right]$$
 (12)

2.2 凹面反射镜的傅里叶变换性质

当反射函数可用(12)式表示时,凹面反 射镜可对入射场实现傅里叶变换。如图3所 示,物和反射镜的距离为1,用复振幅为1的 单色平面光波垂直入射。假定物体的透射函 数为 t_o(x, y),则刚透过物体的场复振幅是 t_o(x, y),入射到反射镜的场复振幅为 v_i(x, y),它们的傅里叶变换分别是:

 $F_0(u, v) = \mathscr{F} \{t_0(x, y)\},\$

$$\mathcal{F}_{l}(u, v) = \mathcal{F}\{v_{l}(x, y)\}_{o}$$

罗表示傅里叶变换, 假定菲涅耳近似适用于 距离 1 上的传播, 它们的关系可表示为:

图 3 凹面反射镜实现傅里叶变换

 $F_{l}(u, v) = F_{0}(u, v)e^{ikl}e^{-i\pi\lambda l(u^{2}+v^{3})},$ (13) 令被镜子反射后光波的复振幅为 $v_{l'}$, 焦面上 光波的复振幅为 v_{f} , 用菲涅耳衍射公式求出 v_{f} 是:

$$v_{f}(x_{f}, y_{f}) = \frac{e^{-i\frac{k}{2f}(x_{f}^{2}+y_{f}^{2})}}{i\lambda f}$$
$$\times \int_{-\infty}^{\infty} v_{l'}(x, y) e^{i\frac{k}{2f}(x_{f}^{2}+y_{f}^{2})}$$

 $\times e^{-i2\pi(ux+vy)} dx dy$ (14)

式中 $u = \frac{x_f}{\lambda f}$, $v = \frac{y_f}{\lambda f}$, 并且省去了常数位相 因子 e^{ikf} 。 $v_{t'}(x, y)$ 和 $v_l(x, y)$ 由(12)式联系 起来:

 $v_{l'}(x, y) = v_l(x, y)e^{-i\frac{k}{2j}(x^2+y^3)}, \quad (15)$ 将(15)式代入(14)式得.

$$v_{f}(x_{f}, y_{f}) = \frac{e^{-i\frac{k}{2j}(x_{f}^{2}+y_{f}^{2})}}{i\lambda f}$$

$$\times \int_{-\infty}^{\infty} v_{l}(x, y) e^{-i2\pi(ux+vy)} dx dy$$

$$= \frac{e^{-i\frac{k}{2j}(x_{f}^{2}+y_{f}^{2})}}{i\lambda f} F_{l}\left(\frac{x_{f}}{\lambda f}, \frac{y_{f}}{\lambda f}\right),$$
(16)

再将(13)式代入上式得:

 $V_{f}(x_{f}, y_{f}) = \frac{e^{(kl)}}{i\lambda f} e^{-i\frac{k}{2f}(x_{f}^{2} + y_{f}^{2})(1 - l/f)} \cdot F_{0}(u, v)$ (17)

也就是说在凹面镜焦面上的场复振幅分布正 比于物分布的傅里叶变换。当考虑强度分布 时,前面的二次位相因子可消去:

 $I_{f}(x_{f}, y_{f}) = |v_{f}(x_{f}, y_{f})|^{2} = \frac{1}{\lambda^{2} f^{2}} |F_{0}(u, v)|^{2}$ (18)

三、实 验

实验光路如图 4 所示,平行光入射放在 Po面的物体,从物体衍射出来的光波经平面 半反镜到达凹面反射镜,经这反射镜进行傅 里叶变换后的反射光波由平面半反镜分离出 来,在焦面 P₁上形成傅里叶分布,在这谱面 上可实现各种滤波操作。滤波后的场经全反 镜最后到达 1:1 成像面 P₁,在传播过程中, 场实现了傅里叶反变换。

图 4 一个全部由反射镜组成的光学图象 处理系统结构图

(1) Abbe-Porter 滤波实验。为检验凹 面镜系统的相干成像、频谱分析和综合机理, 用激光作为光源,进行了频谱面滤波操作。图 5中,(a)是二维网状物体没经任何滤波的 像,(b)是它的频谱,(c)是经过狭缝滤波,去 掉网状物体一个方向条纹后的像。从图片上 看到谱的分布以及滤波结果正如所预料的一 样,而且效果较好,这就表明前面的理论分析 和推导是合理的。

图 5 反射镜系统进行的 Abble-Porter 滤波实验结果

(2) 匹配滤波。匹配滤波的一个重要实际应用是图像的特征识别。通过对匹配滤波的试验,可检查反射镜系统对卷积,自相关等

(下转第98页)

2. 我们考察(7)式,如果脉宽进一步压 缩,以至于条件(10)式不能成立,那么经过一 段距离的传播,光脉冲时间宽度

 $\tau' = \sqrt{\tau^2 + A^2(r)}$ (16) 即沿光束径向,脉宽呈加宽趋势,这时光脉冲 在自由空间的传播对脉宽的影响不容忽视。

3. 由(11)式,光强可以用

$$I = I_0 \frac{a_0^4 \omega_0^2}{c^2 (z - z_0)^2} \Big[1 + \Big(\frac{\eta - B}{\omega_0 \tau^2} \Big)^2 \Big] \\ \times e^{-r^2 / a^2} e^{-(\eta - B)^2 / \tau^2}$$
(17)

来表示。由于在脉冲中央部分,η-B≪ω₀τ², 所以脉冲保持高斯型;在边缘,光强下降的趋

图 6 实验光路图

运算的效果。光路布置如图 6。制作匹配滤 波器时,用会聚透镜引入一束会聚于 P₁ 面 的参考光。此参考光和 P₁ 面上的谱分布干 涉,产生所需要的匹配滤波器的复振幅。用 干板记录下这干涉图案,就得到匹配滤波器。 复位干板后,就可进行匹配滤波。图7 是实 验结果,左边的白点就是自相关点,右边是物 势相对较缓慢,稍偏离原先的高斯型。

4. 要避免以上的现象,尤其是当光脉冲 的时间宽度在一个光周期以内时,必须注意 保持光束宽度

$$a_0 \gg b_{00}$$
 (18)

这个条件和空间缓变振幅近似是一致的。

四、结 论

我们讨论了光脉冲时间宽度在毫微微秒 量级,尤其是在等于或小于一个光周期时,光 脉冲在自由空间传播时产生的一些新现象, 如空间频移、脉冲时间宽度和轮廓的变化等, 这些现象将影响脉冲的一系列性质,如对脉 冲压缩时难以完全消除啁啾,光脉冲在光纤 中传播时性质有所变化,等等。最后我们给 出了避免这种现象的条件,相当于空间缓变 振幅近似。

参考文献

- 1 R. L. Fork et al., Appl. Phys. Lett., 38, 671 (1981)
- 2 C. H. Brito-Cruz et al., CLEO'87-IQEC'87
- 3 J. D. Jackson, Classical Electrodynamic (John Wiley & Sons, USA, 2nd ed., 1975)

体to的像。

图7 反射镜系统匹配滤波实验结果

考文献

- 1 A.S. Husain-Abidi, US Patent 213558
- 2 A. S. Husain-Abidi, US Patent 277541
- 3 A. S. Husain-Abidi, US Patent 360529
- 4 P. C. Mchta et al., Appl. Opt., 16(2), 445(1977)
- 5 A. Offer, US Patent 3748015
- 6 A. Suzuki, US Patent 4167677
- 7 A. Suzuki, Appl. Opt., 2(24), 3943(1983)
- 8 A. Suzuki, Appl. Opt., 22(24), 3950(1983)
- 9 C. S. Ih et al., Appl. Opt., 19(24), 4196 (1980)
- B. I. Specktor, World Patent Acc No. 85-060730/ 10
- 11 B. I. Speltor, World Patent Acc No. 85-140073/23